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ABSTRACT Skeletal growth is explored between
Early Neolithic (EN) (8000 to 6800 BP) and Late Neolithic
(LN) (6000 to 5200 BP) foragers from the Cis-Baikal
region of Eastern Siberia. Previous studies suggest that
increased systemic stress and smaller adult body size
characterize the EN compared to LN. On this basis,
greater evidence for stunting and wasting is expected in
the EN compared to LN. Skeletal growth parameters
assessed here include femoral and tibial lengths, esti-
mated stature and body mass, femoral midshaft cortical
thickness, total bone thickness, and medullary width. For-
ward selection was used to fit polynomial lines to each
skeletal growth parameter relative to dental age in the
pooled samples, and standardized residuals were com-
pared between groups using t tests. Standardized resid-
uals of body mass and femoral length were significantly

lower in the EN compared to LN sample, particularly
from late infancy through early adolescence. However, no
significant differences in the standardized residuals for
cortical thickness, medullary width, total bone thickness,
tibial length, or stature were found between the groups.
Age ranges for stunting in femoral length and wasting in
body mass are consistent with environmental perturba-
tions experienced at the cessation of breast feeding and
general resource insecurity in the EN compared to LN
sample. Differences in relative femoral but not tibial
length may be associated with age-specific variation in
growth-acceleration for the distal and proximal limb seg-
ments. Similarity in cortical bone growth between the two
samples may reflect the combined influences of systemic
and mechanical factors on this parameter. Am J Phys
Anthropol 153:377–386, 2014. VC 2013 Wiley Periodicals, Inc.

This study uses a variety of skeletal growth parame-
ters to explore differences in stress between Early and
Late Neolithic foragers from the Cis-Baikal region of
Eastern Siberia. Stress is defined as an external pertur-
bation that disrupts physiological homeostasis (Seyle,
1936; Goodman et al., 1988). Skeletal growth is dis-
rupted by external stressors when nutritional thresholds
are breached and reallocated from growth in body size to
provide energetic support to the continued growth and
maintenance of essential tissues (Leary et al., 2006;
Barbiro-Michaely et al., 2007; Giussani, 2011; Pomeroy
et al., 2012). These consequences represent physiological
trade-offs in the developing organism, whereby invest-
ments in survival limit future energetic investments in
growth, maintenance, and productivity (Worthman and
Kuzara, 2005; Kuzawa, 2007).

It is well established that populations experience
reduced rates of growth or faltering in age-specific size
when environmental perturbations exact a significant
cost on energy metabolism (Bogin, 1998). Bioarchaeologi-
cal studies find slowed growth and age-specific stunting
in long bones among skeletal samples where the physio-
logical cost of maintenance was increased (Johnston,
1962; Cook, 1984; Jantz and Owsley, 1984; Mensforth,
1985; Lovejoy et al., 1990; Okazaki, 2004; Pinhasi et al.,
2005, 2006; Schillaci et al., 2011; Temple, 2011). Evi-
dence for wasting in cortical width is also reported in
environments with greater systemic stress levels (Hum-
mert, 1983; Van Gerven et al., 1985; Mays et al., 2009;
Cowgill, 2010). This process is surface-specific with endo-
steal wasting found in samples from nutritionally
deprived environments (Garn et al., 1964, 1967; Garn,
1970; Van Gerven et al., 1985). Catch-up growth in corti-

cal bone width is not, however, reported, suggesting that
disruptions in cortical bone growth can be observed into
adulthood (Garn et al., 1964, 1967; Antoniades et al.,
2003). More recent studies advocate for comparisons of
body mass and stature as these parameters allow for
broad comparisons between skeletal and living growth
samples (Ruff, 2007). Indeed, evidence for body mass
wasting and faltering in stature is reported from nutri-
tionally deprived environments (Cowgill, 2010; Robbins
Schug, 2011; Ruff et al., 2013).

Growth differences in height and weight during infancy
and childhood are attributed to the physiological cost of
maintenance, while those in adolescence are associated
with ancestry in samples of contemporary humans from
documented nutritional environments and genetic histor-
ies (Habicht et al., 1974; Johnston et al., 1975, 1976; Fri-
sancho et al., 1980; Graticer and Gentry, 1981). The
environmental influence on growth during infancy and
childhood reflects a relatively strong response to demands
for maintenance early in development that diminish ener-
getic resources allocated for growth (Hochberg and
Albertsson-Wikland, 2008; Hochberg, 2009). These find-
ings are of particular importance to bioarchaeological
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research as age-specific variation in stature and body
mass may help explain the relative environmental contri-
bution to skeletal growth in genetically divergent popula-
tions (Ruff et al., 2013).

Hunter-gatherers from the Cis-Baikal region of East-
ern Siberia have formalized cemeteries beginning in the
Early Neolithic (8000 to 6800 BP) and are associated
with Kitoi culture (Bazaliiskii, 2010; Weber and Bet-
tinger, 2010). Early Neolithic Kitoi cemeteries are geo-
graphically concentrated in the upper section of the
Angara River and Southwestern Cis-Baikal. Early Neo-
lithic Kitoi cultures were biological descendants of Meso-
lithic, or possibly, Paleolithic inhabitants of the Cis-
Baikal region and have elevated frequencies of hap-
logroups D, F, and 5Ua (Mooder et al., 2006, 2010).
These haplogroups help distinguish the Early Neolithic
Kitoi from the Late Neolithic Isakovo samples (see
below) as well as modern indigenous inhabitants of the
region. The sublineage of haplogroup F found in the
Kitoi cultures is observed at high levels in modern Kets
indicating the possibility of affinity between these two
groups (Schurr et al., 2010).

The Late Neolithic mortuary traditions are known as
Isakovo, and date between 6000 and 5200 BP (Weber
et al., 2010). Evidence for an approximately 800-year
discontinuity in the use of formal cemeteries during the
Middle Neolithic period separating the Early Neolithic
Kitoi and Late Neolithic Isakovo mortuary traditions is
supported by multiple sources of data. First, radiocarbon
dates show a clear period of abandonment of cemeteries
in all Cis-Baikal micro-regions (Angara, Lena, Little
Sea, and Southwest Cis-Baikal) between 6800 and 6000
BP (Weber et al., 2006). In addition, a more intensive
reliance on freshwater fish is found in the Early Neo-
lithic Kitoi, while Late Neolithic Isakovo people appear
to have focused on lagoon/offshore fish, terrestrial mam-
mals, and seal (Weber et al., 1993, 1998; Katzenberg
et al., 2010). Genetic discontinuity is also found between
the two groups, with the Late Neolithic Isakovo sample
having a different sublineage of haplogroup F than the
Early Neolithic groups, and possessing the U5a hap-
logroup suggesting close relationships with Uralic and
indigenous people from the Altai region (Mooder et al.,
2006, 2010; Schurr et al., 2010). Of further importance
is the noted lack of haplogroups H-K, T, V, and X indi-
cating little relatedness to the Western Eurasian popula-
tions associated with the Early Neolithic Kitoi people.

Frequencies of individuals with enamel hypoplasia are
significantly higher among the Early Neolithic Kitoi
compared to Late Neolithic Isakovo cultures, though no
relationship between enamel hypoplasia presence and
age-at-death is reported (Lieverse et al., 2007; Lieverse,
2010). This may be due to the fact that the presence of
enamel hypoplasia represents events of different chro-
nology, duration, and periodicity, and thus, a greater
prevalence of individuals with defects may not necessar-
ily produce differential impacts on age-at-death patterns.
Studies of postcranial morphology found significantly
greater adult femoral length and body mass among the
Late Neolithic Isakovo compared to Early Neolithic Kitoi
people (Stock et al., 2010). It is possible that differences
in adult size between the Early Neolithic Kitoi and Late
Neolithic Isakovo may be related to differences in sys-
temic stress, though these factors have not been
explored using skeletal growth data.

On this basis, two hypotheses are tested. First, evi-
dence for stunting in longitudinal growth and wasting in

body mass and cortical bone growth will be found in the
Early Neolithic Kitoi compared to Late Neolithic Isakovo
sample. The Early Neolithic Kitoi will have shorter long
bone lengths, smaller body mass, reduced stature, thin-
ner cortical bone, and wider medullary cavities relative
to dental age when compared to the Late Neolithic Isa-
kovo. This hypothesis is based on studies documenting
evidence for greater systemic stress in the Early Neo-
lithic Kitoi compared to Late Neolithic Isakovo. Second,
differences in skeletal growth between the two samples
will emerge during infancy and childhood. This hypothe-
sis is based on research indicating that growth disrup-
tions reflecting systemic stress tend to occur at these
stages of development.

MATERIALS

The skeletal growth samples used in this study were
derived from three archaeological sites. The Early Neo-
lithic Kitoi sample was recovered from two cemeteries,
Lokomotiv and Shamanka II, located along the banks of
the Angara River in the city of Irkutsk and the south-
western tip of Lake Baikal, respectively (Fig. 1). Radio-
carbon dating of human skeletal remains from these
sites has been completed for 59 skeletons from the Loko-
motiv site and 36 skeletons from the Shamanka II site
(Weber et al., 2010). Once calibrated, these cemeteries
date between 7800 and 6900 BP. The Late Neolithic
sample was recovered from one cemetery, Ust’-Ida I,
located along the Angara River approximately 150 km
north of Irkutsk (Fig. 1). Sixty radiocarbon dates were
obtained for 64 individuals from the Ust’-Ida I site
(Weber et al., 2010). The Late Neolithic component of
the cemetery dates between 6000 and 5200 BP.

METHODS

Age-specific sample sizes are listed in Table 1. Age-at-
death was estimated using tooth formation and emer-
gence. Tooth formation stages were used to estimate
age-at-death in the majority of individuals due to the
limited impact of environment on this process and
repeated independent confirmation of accuracy between
studies (Smith, 1991; AlQhatani et al., 2010). Radio-
graphs for the mandibles and maxillae were obtained
using the NOMAD Pro Hand-Held X-ray System (Ari-
bex, Provo, Utah) and Dr. Suni Plus Intraoral Digital
Light Sensor (SUNI Medical Imaging Inc., San Jose,

Fig. 1. Locations of the sites yielding human skeletal
remains included in this study. A. Ust Ida I, B. Lokomotiv, C.
Shamanka II.

378 D. H. TEMPLE ET AL.

American Journal of Physical Anthropology



California). Formation stages were recorded according to
standard protocols for the deciduous and permanent
dentition, and ages were assigned to each tooth based on
reference standards (Liversidge and Molleson, 2004;
AlQhatani et al., 2010). The average age obtained for all
teeth was used as a final estimate of age-at-death in
each individual. Averaging estimates from multiple teeth
produces the most accurate results on samples of known
age (Smith, 1991).

Where tooth formation was not possible to observe,
tooth emergence was used to estimate age. Here, emer-
gence stages were recorded as not emerged, emerged
past the alveolus, and emerged into occlusion. Stages of
tooth emergence were then compared to a mandibular
tooth emergence profile for the Cis-Baikal sample
(n 5 53) based on ages estimated using tooth formation.

It is not possible to accurately determine sex in pre-
adolescent skeletal remains, though hormonal differen-
ces between male and female infants suggests that
growth differences may be found at early stages of devel-
opment, and certainly into adolescence (Saunders, 2008).
This introduces an unknown magnitude of error to skel-
etal growth studies that cannot be corrected. Averages
for adult male and female body mass, femoral length,
tibial length, and stature are, however, included to help
offset this problem by providing some understanding of
how variation in body size manifested between the sexes
in these samples.

Longitudinal growth was assessed by comparing linear
measurements of the femur and tibia relative to dental
age. These bones were chosen because variation in rela-
tive sitting height attributable to environmental effects
is often reflected in leg length (Tanner et al., 1982;
Bogin et al., 2002). Maximum diaphyseal lengths of the
femur and tibia were collected using a sliding osteomet-
ric board and recorded to the nearest millimeter, follow-
ing standard osteological protocols (Buikstra and
Ubelaker, 1994). Each measurement was collected three
times with modal value listed as correct. Maximum

measurements were recorded as correct when modal val-
ues were not observed. Adult maximum femoral and tib-
ial lengths were taken from the published literature
(Stock et al., 2010) and converted to maximum diaphys-
eal lengths using equations provided by Ruff (2007).
Average adult values for male and female femoral and
tibial diaphyseal lengths are included beyond the imma-
ture data points in Figure 2.

Single bones are, however, subject to variation in pro-
portional growth and the relative contribution of each
limb to stature (Ruff, 2007; Ruff et al., 2013). As a
result, femoral and tibial diaphyseal length may not nec-
essarily be perfectly associated with the influence of sys-
temic stress on cumulative stature. Though the adult
samples from Cis-Baikal have similar limb proportions
(Stock et al., 2010), it remains important to ensure that
differences in the growth of stature are similar to the
trends observed in femoral and tibial diaphyseal length.
Stature was estimated using age-specific equations pro-
duced by Ruff (2007). These equations were tested for
accuracy on a different sample and were found to per-
form accurately (Sciulli and Blatt, 2008). In order to
maximize sample sizes, the following bones, in order of
use and accuracy, were utilized to estimate stature in
the Cis-Baikal samples: 1) femur 1 tibia (n 5 44), 2)
femur (n 5 5), 3) tibia (n 5 4), 4) humerus 1 radius
(n 5 1). After 12 years of age, equations generated by
Ruff (2007) include maximum bone lengths. Maximum
bone lengths were not measured in the Cis-Baikal sam-
ple because both epiphyses (distal and proximal) were
infrequently preserved. Maximum diaphyseal lengths
were converted to maximum lengths for individuals aged
greater than 12 years using ratio conversions reported
by Ruff (2007). Limb proportions in the adults from the
Cis-Baikal region are similar to high-latitude, cold-
adapted samples from the New World (Stock et al.,
2010). Adult stature was, therefore, estimated using
equations derived for skeletal samples from high lati-
tude, cold environments (Auerbach and Ruff, 2010), and

TABLE 1. Sample sizes for the immature Early Neolithic (EN) and Late Neolithic (LN) groups listed by growth parameter

Body mass
Cortical
growtha Femoral length Tibial length Stature

Age EN LN EN LN EN LN EN LN EN LN

0 2 0 1 1 1 0 1 1 1 2
1 3 0 6 0 4 0 3 0 4 0
2 2 1 2 2 2 2 2 2 3 2
3 2 0 3 2 3 0 3 0 4 1
4 0 0 0 0 1 2 0 0 0 0
5 3 1 1 2 0 2 1 2 1 3
6 1 3 4 4 3 3 3 4 4 3
7 1 0 0 1 0 0 4 1 0 1
8 0 0 2 0 2 0 2 0 4 0
9 0 1 1 2 3 1 1 2 2 2
10 2 2 0 4 1 2 2 3 1 4
11 3 4 3 1 3 3 3 1 3 1
12 0 0 0 1 0 1 0 2 0 1
13 1 0 1 2 1 0 2 1 2 1
14 0 0 0 1 0 0 0 1 0 1
15 0 0 1 1 1 0 1 0 1 0
16 0 0 1 1 1 0 1 1 2 1
Totalb 20 12 26 25 27 16 29 21 32 23

a This sample includes cortical, medullary, and total bone width.
b Adult sample sizes: body mass (EN Male: 31, EN Female: 19; LN Male: 16, LN Female: 8), femoral length (EN Male: 28, EN
Female: 19; LN Male: 17, LN Female: 8), tibial length (EN Male: 21, EN Female: 15; LN Male: 9, LN Female: 2), stature (EN
Male: 28, EN Female: 19; LN Male: 17, LN Female: 8).
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based on measurements of adult femoral bicondylar
length (Stock et al., 2010). Average adult values for male
and female stature are included beyond the immature
sample in Figure 2.

Growth in body mass was estimated by first meas-
uring the maximum intermetaphyseal breadth of the
distal femoral metaphysis or superior–inferior width of
the femoral head using standard protocols (Buikstra and
Ubelaker, 1994; Ruff, 2007). Body mass was then esti-
mated using a series of age-specific equations that per-
form well on skeletal growth samples of European and
African American ancestry (Ruff, 2007; Sciulli and Blatt,
2008). This study utilized superior–inferior width of the
femoral head as the primary indicator of body mass in
individuals aged >6.9 years, while maximum intermeta-
physeal width of the distal femur was used to estimate
body mass in individuals <7.0 years. The maximum age
used to compare body mass in this study was 13.5 years
due to underlying problems with estimating body mass
between 15.0 and 16.0 years (Ruff, 2007). Adult body
mass was estimated using measurements of femoral
head breadth (Stock et al., 2010). Average adult values
for male and female body mass are included beyond the
immature data points in Figure 2.

Growth in cortical bone thickness was analyzed by
comparing cortical, total bone, and medullary width rela-
tive to age between the two foraging samples. Anterior–
posterior radiographs of each femur were captured using
the above mentioned equipment (NOMAD Pro X-ray
device and Dr. Suni digital light sensor). Total bone (T)

and medullary (M) width were measured in accordance
with previously established standards (Ives and Brickley,
2004). Cortical thickness was calculated as T 2 M. Meas-
urements were collected using the Professor Suni radio-
graphic software package (Suni Medical Imaging Inc.,
San Jose, California). T and M were measured at 45% of
maximum diaphyseal length (from the distal end) due to
the unequal contribution of femoral epiphyses to dia-
physeal length (Ruff, 2003). Measurements of adult cort-
ical thickness were not available for either sample, and
thus, were omitted from the study.

Line fitting methods that describe the relationship
between growth and age were estimated using forward
selection. Forward selection fits regression lines of suc-
cessively higher order terms to find a line that best
describes the relationship between two variables (Zar,
2010, p 461–463). The method utilizes a t test to evalu-
ate whether or not the new terms are more successful
than the previous terms at describing this relationship.
Expressions are added to the equation until the t value
is insignificant indicating that the previous choice is
best fit to the data. There are multiple precedents in
skeletal growth studies for this approach, along with the
caveat that these lines do not reflect true growth curves,
and are instead used as a tool to evaluate trends in
stunting/wasting in comparative perspective (Pinhasi
et al., 2005, 2006; Mays et al., 2009). Here, forward
selection was used to fit lines to the relevant growth
parameter relative to dental age for the pooled Early
Neolithic Kitoi and Late Neolithic Isakovo samples.

Fig. 2. Skeletal growth trends in (a) body mass, (b) femoral length, (c) tibial length, and (d) stature. Polynomial lines were fit
to the data using forward selection. Average adult male and female values are indicated beyond the immature data points.
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Residuals were calculated around the lines fit to the
pooled samples, and standardized residuals were calcu-
lated by dividing the residuals for each individual by the
pooled standard deviation of each growth parameter.
Normality in the distribution of standardized residuals
was assessed using a Shapiro–Wilk test and homogene-
ity of variances was evaluated using a folded F-statistic.
The choice of statistical test to evaluate differences in
the standardized residuals between groups was based on
the results of the Shapiro–Wilk and folded F tests. All
calculations were performed on SAS 9.1, while all figures
were produced using Microsoft Excel 2007 or PASW 19.

The second hypothesis addresses the issue of environ-
mental versus genetic contributions to skeletal growth
in the Cis-Baikal samples. Here, it is necessary to esti-
mate the ages at which differences in growth trajectories
occur. The age-specific sample sizes used by this study
remain too small to carry out statistically meaningful
tests between narrow age-groups, but differences in
growth can be estimated through careful evaluation of
standardized residuals, where significant differences
between overall standardized residuals (see above) are
found. A similar approach was employed by Ruff et al.
(2013) in attempting to reveal the developmental stages
where growth differences appeared between Arikara,
Çatalh€oy€uk, and Denver samples.

RESULTS

Table 2 presents the results of the forward selection
analysis and includes the accompanying equation for
each growth parameter. Scatterplots from these analyses
are shown in Figures 2 and 3. Results of the Shapiro–
Wilk test found that the alpha-levels for the standar-
dized residuals of each growth parameter were >0.05 in
each sample indicating a normal distribution. Q–Q plots
of these data were visually evaluated, and all data
points fell within the 90% confidence intervals of the

lines describing the relationships between observed and
expected values for the standardized residuals. Variance
homogeneity was also found for each comparison. Stand-
ardized residuals for each growth parameter were,
therefore, compared between the Early Neolithic Kitoi
and Late Neolithic Isakovo using a pooled t-test.

Box plots of the standardized residuals for the growth
parameters compared between the two samples are
shown in Figures 4 and 5. Significantly greater standar-
dized residuals of body mass (t 5 4.11, P< 0.0003) and
femoral length (t 5 2.50, P<0.0198) were found in the
Late Neolithic Isakovo compared to Early Neolithic Kitoi
samples (Fig. 4). These differences appear between late
infancy and early adolescence (Fig. 2a,b). Differences in
cortical thickness (t 5 1.59, P<0.1173) and medullary
width (t 5 1.80, P<0.0786) were marginally insignificant
between the two samples. The Early Neolithic Kitoi had
slightly larger cortical thickness and smaller medullary
width than the Late Neolithic Isakovo sample (Fig. 5).
No significant differences were observed between the
two samples for the standardized residuals of total bone
width (t5 0.38, P< 0.7027), tibial length (t 5 0.51,
P<0.6171), or stature (t5 0.63, P<0.4613) (Figs. 4 and 5).

DISCUSSION

The first hypothesis of this study predicted that skele-
tal evidence for stunting and wasting would be observed
in the Early Neolithic Kitoi compared to Late Neolithic
Isakovo sample and that these differences would be con-
centrated between infancy and childhood. This hypothesis
is mostly supported when skeletal growth parameters
associated with body size are compared. The Early Neo-
lithic Kitoi had significantly lower standardized residuals
of body mass compared to the Late Neolithic Isakovo
sample. Experimental studies point towards relationships
between caloric restriction, body mass, and cortical thick-
ness (Hamrick et al., 2009). Body mass is, however, also

TABLE 2. Results of the forward selection analysis listing the appropriate model and accompanying equation for each growth
parameter

Variable Model Fit Equation

Femoral length (mm) Quartic y 5 20.0154x4 1 0.5412x3 2 6.4006x2 1 45.513x 1 85.031
Stature (cm) Quartic y 5 20.006x4 1 0.2339x3 2 3.0675x2 1 20.483x 1 51.286
Tibial length (mm) Quartic y 5 20.0171x4 1 0.6241x3 2 7.374x2 1 43.391x 1 74.027
Medullary width (mm) Quadratic y 5 20.0312x2 1 0.9477x 1 5.007
Body mass (kg) Quadratic y 5 20.0351x2 1 1.6885x 1 7.783
Total bone width (mm) Quadratic y 5 20.0328x2 1 1.6984x 1 7.4875
Cortical width (mm) Linear y 5 20.0351x2 1 1.6885x 1 7.783

Fig. 3. Skeletal growth trends in (a) cortical thickness, (b) total bone thickness, (c) medullary width. Polynomial lines were fit
to the data using forward selection.
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correlated with lean muscle mass and fat mass, both of
which reduce when caloric restrictions are applied (Ham-
rick et al., 2009). Data derived from living humans sug-
gest no significant differences between energetically
limited and Western samples in fat-free mass, but signifi-
cantly greater adiposity in Western compared to energeti-
cally limited populations (Campbell et al., 2005; Sherry
and Marlowe, 2007; Hruschka et al., 2013). It is not possi-
ble to test for variation in adiposity between these two
samples, but it is important to note that this difference
accounts for variation in body mass between populations
where the physiological cost of maintenance varies.

Significant differences in femoral length, but not tibial
length and stature were also detected. The residuals for
femoral length relative to dental age were significantly
larger in the Late Neolithic Isakovo compared to Early
Neolithic Kitoi. Previous studies point out that growth
in long bone length and stature is sensitive to systemic
stress (Mensforth, 1985; Lovejoy et al., 1990; Okazaki,
2004; Pinhasi et al., 2005; Schillaci et al., 2011; Ruff
et al., 2013, and others), though the relative sensitivity
of each skeletal element remains an open question. The
findings of this study may be associated with the timing
of variation in the rate of growth between distal and

Fig. 4. Standardized residuals of skeletal growth for the Early Neolithic Kitoi and Late Neolithic Isakovo samples: (a) body
mass, (b) femoral length, (c) tibial length, and (d) stature.

Fig. 5. Standardized residuals of skeletal growth for the Early Neolithic Kitoi and Late Neolithic Isakovo samples: (a) cortical
thickness, (b) total bone thickness, and (c) medullary width.
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proximal limb segments. Following birth, the rate of
growth is greatest in distal compared to proximal limb
segments (Moss et al., 1955). This trend shifts at approx-
imately 3.0 years, when the rates of growth in proximal
limb segments overtake the distal elements (Smith and
Buschang, 2004). In early adolescence, the rate of
growth in distal segments then increases relative to that
observed in the proximal segments for a narrow window
of time (Smith and Buschang, 2005). Similar trends are
reported by studies that track the ontogeny of intralimb
indices (Davenport, 1933; Ruff et al., 1993; Ruff et al.,
2002; Temple et al., 2011). Because femoral growth
stunting in the Early Neolithic Kitoi sample appears
between late infancy and early adolescence, it is possible
that the distal elements were less affected by this pro-
cess, and that cumulative stature also remained
unaffected.

Differences in body mass and femoral length between
the Early Neolithic Kitoi and Late Neolithic Isakovo
begin during late infancy and persist through early ado-
lescence. This result suggests that variation in adult
body mass and femoral length between the two samples
is associated with growth stunting and wasting due to
environmental factors and is consistent with the second
hypothesis of this study. Growth stunting during this
period may be due to the nutritional consequences of
weaning (Pinhasi et al., 2005). Weaning is the process
where breast milk is gradually removed from infant
diets beginning with the introduction of complementary
foods and terminating with the cessation of breast feed-
ing (Sellen, 2007). Nutritional consequences of weaning
include elevated risk of exposure to resource shortages
or reliance on complementary foods of low nutritional
quality as the infant no longer relies on breast milk as a
primary source of nutrition (Rousham and Humphrey,
2002). In addition, the infant no longer receives passive
immunity from breast milk, which increases the risk of
respiratory and diarrheal diseases (McDade, 2003). All
of these environmental hazards are associated with
growth stunting in cross-sectional studies of living
humans: these conditions increase energetic investments
in maintenance and decrease investments in growth dur-
ing the transition to complementary foods and period of
breast feeding cessation (Becker et al., 1991; Leonard
et al., 1995; Adair and Guilkey, 1997; Arpadi et al.,
2009). It is, however, important that interpretations
tying weaning stressors to growth stunting or wasting in
bioarchaeological context are supported by stable isotope
evidence for infant feeding behavior (Humphrey, 2008).

Isotopic studies have explored the introduction of com-
plementary foods and age-at-breast-feeding cessation in
the Early Neolithic Kitoi compared to Late Neolithic Isa-
kovo of Cis-Baikal (Waters-Rist et al., 2011). Early Neo-
lithic Kitoi populations reduced breast-milk consumption
at approximately 2.0 years of age and ceased breast milk
consumption between 3.5 and 4.0 years, while the Late
Neolithic Isakovo reduced breast milk consumption
around 1.0 years and ceased breast milk consumption
earlier than 3.0 years. Differences in femoral length and
body mass in the current study appear at or around the
time of breast feeding cessation.

This suggests that environmental perturbations associ-
ated with the cessation of breast feeding may have acted
as a catalyst for growth differences between the Early
Neolithic Kitoi and Late Neolithic Isakovo samples.

Growth stunting in later childhood and early adoles-
cence often reflects nutritional intake due to diminished

resource availability or dietary quality (Leonard, 1989;
Cameron et al., 1998; Berti et al., 2000; Foster et al.,
2005). Foragers with narrow dietary spectrums from
highly seasonal environments experience greater stress
episode durations than those with wider dietary spec-
trums from less seasonal environments (Guatelli-Stein-
berg et al., 2004; Temple et al., 2013). Among
indigenous, fishing-intensive populations at high lati-
tudes, winter foods are amassed from summer migra-
tions of fish, which vary in intensity and scale, and the
availability of these resources is subject to fluctuation
based on environmental productivity (Donald and Mitch-
ell, 1975; Shnirelman, 1994).

In the Cis-Baikal region, the Early Neolithic Kitoi
were intensively focused on freshwater fish and lived in
a cold, dry environment that was highly seasonal in
nature (White and Bush, 2010; Katzenberg et al., 2010).
In contrast, the Late Neolithic Isakovo had a wider die-
tary breadth, focusing on freshwater fish, seal, and ter-
restrial mammals, while living in a less seasonal
environment (Weber et al., 1993, 1998; White and Bush,
2010; Katzenberg et al., 2010). There is also evidence
suggesting that the Early compared to Late Neolithic
environment was less productive due to differences in
precipitation and nutritional input into freshwater
reserves (White and Bush, 2010). This variation diet and
climate is associated with a greater frequency of individ-
uals with linear enamel hypoplasia in the Early Neo-
lithic Kitoi compared to Late Neolithic Isakovo (Lieverse
et al., 2007; Lieverse, 2010). Evidence for either emer-
gency breast feeding or nitrogen catabolism in infants/
children may also correspond to periods of resource scar-
city among the Early Neolithic Kitoi sample (Waters-
Rist et al., 2011). This study reports evidence for growth
faltering among the Early Neolithic Kitoi compared to
Late Neolithic Isakovo, and these trends may also be
associated with dietary breadth and resource availabil-
ity. This interpretation does not seek to diminish the
role of infectious disease in producing growth faltering
during these years of development (Allen, 1994). How-
ever, the available archaeological evidence in the Cis-
Baikal region points towards variation in resource avail-
ability and dietary breadth as being a primary mover of
the growth differences documented by this study.

This study also predicted wasting in cortical bone
growth among the Early Neolithic Kitoi compared to
Late Neolithic Isakovo due to purportedly varying levels
of systemic stress between the two samples and the
influence of systemic stress on cortical bone growth. Dif-
ferences in cortical thickness and medullary width were
marginally insignificant, while no differences in total
bone width were found. The Early Neolithic Kitoi had
slightly greater standardized residuals for cortical thick-
ness and slightly smaller standardized residuals for
medullary thickness than the Late Neolithic Kitoi. This
portion of the first hypothesis is, therefore, rejected. Pre-
vious studies suggest that similarity in periosteal expan-
sion and differences in medullary resorption are tied to
nutritional environments (Hummert, 1983; Van Gerven
et al., 1985; Mays et al., 2009; Cowgill, 2010). However,
endosteal resorption is also inhibited by diaphyseal
strain in the preadolescent phase of development, while
endosteal deposition is associated with diaphyseal strain
during adolescence (Jones et al., 1977; Ruff et al., 1994;
Lieberman and Pearson, 2001; Bass et al., 2002). Estro-
gen inhibits the differentiation of osteoblasts in the peri-
osteal membrane, which increases endosteal deposition
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and reduces periosteal expansion in response to strain
during this period of development (Ruff et al., 1994;
Ogita et al., 2008; Devlin, 2011). Overall then, a variety
of environmental and systemic factors act to promote
and/or inhibit endosteal bone deposition at different
phases of development, and the study of cortical bone
growth in mechanically active bones such as the femur
may be complicated by these factors (Agarwal, 2008;
Agarwal and Beauchesne, 2011).

Among the samples from Cis-Baikal, the majority of
Early Neolithic Kitoi individuals have larger residuals
for cortical thickness and smaller residuals for medul-
lary width than the Late Neolithic Isakovo after 10
years of age (Fig. 3a,c). The sample of individuals in this
age group is small, but these findings indicate that the
unexpectedly thicker cortical bone and thinner medul-
lary cavities among the Early Neolithic Kitoi compared
to Late Neolithic Isakovo may have been prompted by
the combined influence of mechanical activity and sys-
temic factors. Overall, these findings suggest that ele-
vated diaphyseal strain during this window of
development may have counteracted the influence of sys-
temic stress on cortical bone growth in the Early Neo-
lithic Kitoi. Indirect support for this interpretation is
found in studies of external bone dimensions among the
adults from these samples. Significantly greater femoral
midshaft diameter and anterior–posterior relative to
medio-lateral diameter ratios are reported in the Early
Neolithic Kitoi compared to Late Neolithic Isakovo
(Stock et al., 2010). Though periosteal expansion is
mostly associated with pre-adolescent diaphyseal strain
(Jones et al., 1977; Ruff et al., 1994; Lieberman and
Pearson, 2001; Bass et al., 2002), the results are consist-
ent with a greater level of strain/mobility in the Early
Neolithic Kitoi.

CONCLUSIONS

Significantly smaller standardized residuals for femo-
ral length and body mass were found in the Early Neo-
lithic Kitoi compared to Late Neolithic Isakovo. Stunting
in femoral length and wasting body mass begins around
the time of breast feeding cessation in both samples and
continues through early adolescence. Stunting in femoral
length and wasting in body mass may, therefore, reflect
variation in the environmental risks associated with the
cessation of breast feeding between the two groups. Dif-
ferences in childhood and early adolescent growth
between the two samples may be associated with dietary
breadth and resource availability. No differences in the
standardized residuals of stature or tibial length were
found between the Early Neolithic Kitoi and Late Neo-
lithic Isakovo. This is likely associated with differences
in ages for growth acceleration in distal/proximal limb
segments, and the fact that the disruption of femoral
growth did not impact overall height.

Differences in the standardized residuals of cortical
thickness and medullary width were marginally insignif-
icant between the Early Neolithic Kitoi and Late Neo-
lithic Isakovo, while no differences in total bone width
were found. The Early Neolithic Kitoi had slightly
greater cortical thickness and smaller medullary cavities
than the Late Neolithic Isakovo. This trend appears
after 10 years of age, and may be associated with a
greater level of activity in the Early Neolithic Kitoi com-
pared to Late Neolithic Isakovo during adolescence. If
true, these results indicate that mechanical environment

and systemic factors may mask the influence of the
physiological cost of maintenance on cortical bone
growth.
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